A link between quantum logic and categorical quantum mechanics
نویسنده
چکیده
Abramsky and Coecke (Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425, IEEE Comput. Soc., New York, 2004) have recently introduced an approach to finite dimensional quantum mechanics based on strongly compact closed categories with biproducts. In this note it is shown that the projections of any object A in such a category form an orthoalgebra ProjA. Sufficient conditions are given to ensure this orthoalgebra is an orthomodular poset. A notion of a preparation for such an object is given by Abramsky and Coecke, and it is shown that each preparation induces a finitely additive map from ProjA to the unit interval of the semiring of scalars for this category. The tensor product for the category is shown to induce an orthoalgebra bimorphism ProjA × ProjB → Proj (A ⊗ B) that shares some of the properties required of a tensor product of orthoalgebras. These results are established in a setting more general than that of strongly compact closed categories. Many are valid in dagger biproduct categories, others require also a symmetric monoidal tensor compatible with the dagger and biproducts. Examples are considered for several familiar strongly compact closed categories.
منابع مشابه
Duality Theory and Categorical Universal Logic: With Emphasis on Quantum Structures
Categorical Universal Logic is a theory of monad-relativised hyperdoctrines (or fibred universal algebras), which in particular encompasses categorical forms of both first-order and higher-order quantum logics as well as classical, intuitionistic, and diverse substructural logics. Here we show there are those dual adjunctions that have inherent hyperdoctrine structures in their predicate functo...
متن کاملOn the connection between the categorical and the modal logic approaches to Quantum Mechanics
This thesis aims at connecting the two research programs known as Categorical Quantum Mechanics and Dynamic Quantum Logic. This is achieved in three steps. First we define a procedure to extract a Modal Logic frame from a small category and a functor into the category of sets and relations. Second, we extend such methodology to locally small categories. Third, we apply it to the category of fin...
متن کاملNo-Cloning In Categorical Quantum Mechanics
The No-Cloning theorem is a basic limitative result for quantum mechanics, with particular significance for quantum information. It says that there is no unitary operation which makes perfect copies of an unknown (pure) quantum state. A stronger form of this result is the No-Broadcasting theorem, which applies to mixed states. There is also a No-Deleting theorem. Recently, the author and Bob Co...
متن کاملDialogue Categories and Frobenius Monoids
Higher topological quantum field theory and categorical quantum mechanics
متن کاملQuantifiers for quantum logic
We consider categorical logic on the category of Hilbert spaces. More generally, in fact, any pre-Hilbert category suffices. We characterise closed subobjects, and prove that they form orthomodular lattices. This shows that quantum logic is just an incarnation of categorical logic, enabling us to establish an existential quantifier for quantum logic, and conclude that there cannot be a universa...
متن کامل